2.1: Instantaneous Rate of Change

Definition: The instantaneous rate of change of f at a, is defined to be the limit of the average rates of change of f over shorter and shorter time intervals around a. We can write this mathematically as

$$
\lim _{\substack{b \rightarrow a \\ \text { "b approaches } a \text { " }}} \frac{f(b)-f(a)}{b-a} .
$$

Definition: The derivative of f at a, written $f^{\prime}(a)$, is defined to be the instantaneous rate of change of f at the point a. It is common to write the derivative mathematically as

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

Question: Explain in your own words how the two limits above actually represent the same thing, i.e., explain how they are equal.

Remark: It is common that we will see

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

but this should not confuse you at this point since the variable x (and h) above is (are) just "dummy variables."

Exercise 1: In a time of t seconds, a particle moves a distance of s meters from its starting point, where $s=4 t^{2}+3$.
(a) Find the average velocity between $t=1$ and $t=1+h$ if:

$$
\text { (i) } \quad h=0.1, \quad \text { (ii) } \quad h=0.01, \quad \text { (iii) } \quad h=0.001 \text {. }
$$

(b) Use your answers to part (a) to estimate the instantaneous velocity of the particle at time $t=1$.

Exercise 2: Consider the function f given by the graph below. For each pair of numbers, determine which is larger.

(a) $f(3)$ or $f(4)$
(b) $f(4)-f(3)$ or $\quad f(4)-f(2)$
(c) $\frac{f(4)-f(3)}{4-3}$ or $\frac{f(4)-f(2)}{4-2}$
(d) $f^{\prime}(3)$ or $f^{\prime}(4)$

Exercise 3: The graph of a function $y=f(x)$ is shown below. Indicate whether each of the following quantities is positive or negative and illustrate your answers graphically.
(a) $f^{\prime}(1)$
(b) $\frac{f(3)-f(1)}{3-1}$
(c) $f(4)-f(2)$

Exercise 4: For the function below, at what labeled points is the slope of the graph positive? Negative? At which labeled point does the graph have the greatest slope? The least slope?

